Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles

نویسندگان

  • Michaela S. Burke
  • Lisa J. Enman
  • Adam S. Batchellor
  • Shihui Zou
  • Shannon W. Boettcher
چکیده

Poor oxygen evolution reaction (OER) catalysis limits the efficiency of H2 production from water electrolysis and photoelectrolysis routes to large-scale energy storage. Despite nearly a century of research, the factors governing the activity of OER catalysts are not well understood. In this Perspective, we discuss recent advances in understanding the OER in alkaline media for earth-abundant, first-row, transition-metal oxides and (oxy)hydroxides. We argue that the most-relevant structures for study are thermodynamically stable (oxy)hydroxides and not crystalline oxides. We discuss thin-film electrochemical microbalance techniques to accurately quantify intrinsic activity and in situ conductivity measurements to identify materials limited by electronic transport. We highlight the dramatic effect that Fe cationsadded either intentionally or unintentionally from ubiquitous electrolyte impuritieshave on the activity of common OER catalysts. We find new activity trends across the first-row transition metals, opposite of the established ones, and propose a new view of OER on mixed-metal (oxy)hydroxides that illustrates possible design principles and applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)hydroxides as Oxygen Evolution Catalysts.

The electrolysis of water to produce hydrogen and oxygen is a simple and attractive approach to store renewable energies in the form of chemical fuels. The oxygen evolution reaction (OER) is a complex four-electron process that constitutes the most energy-inefficient step in water electrolysis. Here we describe a novel electrochemical method for the deposition of a family of thin-film transitio...

متن کامل

Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application

Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped ...

متن کامل

Tuning Redox Transitions via Inductive Effect in Metal Oxides and Complexes, and Implications in Oxygen Electrocatalysis

Context & Scale This review aims to bridge the fields of inorganic molecular chemistry, electrocatalysis, lithium-ion batteries, and chemical physics of oxides by introducing a unifying concept linking the electronic structures and electrochemical properties of transition metal oxides and complexes. In this work, by reviewing broad literature on the redox behavior of a number of Ni, Co, Fe, and...

متن کامل

Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media.

Oxygen electrocatalysis, namely of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), governs the performance of numerous electrochemical energy systems such as reversible fuel cells, metal-air batteries, and water electrolyzers. However, the sluggish kinetics of these two reactions and their dependency on expensive noble metal catalysts (e.g, Pt or Ir) prohibit the su...

متن کامل

Electrocatalytic Activity of the Ni57.3Co42.7 Alloy for the Hydrogen Evolution

The hydrogen evolution reaction (HER) on Ni57.3Co42.7 alloy and its main components, polycrystalline nickel and cobalt was investigated in 1.0 mol L–1 NaOH solution at 20 °C using cyclic voltammetry, pseudo-steady-state linear polarization and electrochemical impedance spectroscopy methods. The purpose of investigation was to evaluate the effect of cobalt on the intrinsic catalytic activity of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015